Safer buildings20-story earthquake-safe buildings made from wood
Engineering researchers are putting a two-story wooden structure through a series of powerful earthquake simulations, using a lab shake table. The goal is to gather the data required to design wood buildings as tall as twenty stories that do not suffer significant damage during large earthquakes.
Engineering researchers are putting a two-story wooden structure through a series of powerful earthquake simulations at the University of California San Diego shake table this week. The goal is to gather the data required to design wood buildings as tall as twenty stories that do not suffer significant damage during large earthquakes.
“Designing buildings that are safe even during large earthquakes is hugely important. We are doing that – and we are going further. We are working to minimize the amount of time buildings are out of service after large earthquakes. We are also focused on cutting the costs required to repair them,” said professor Shiling Pei, an Assistant Professor at Colorado School of Mines who is leading the tests funded by the National Science Foundation (NSF) and a variety of industry sponsors. The tests will take place on the UC San Diego shake table, the largest outdoor shake table in the world.
Based on the insights gleaned from this current set of tests and related research, the team will return to San Diego in 2020 to build, shake, and ultimately burn an earthquake-resilient 10 story timber building on the UC San Diego shake table.
UCSD says that in the current tests of the two-story, 22-foot-tall structure, the researchers are studying the behavior of full-scale seismic safety systems made from advanced wood materials – including rocking walls , which can rock during a temblor and then re-center back by itself, and innovative seismic safety designs for the structural elements in the building’s floors. The wood is primarily cross-laminated timber (CLT), which is a relatively new, high-performance material made from layers of wood laminate.
“With the arrival of cross-laminated timber, we can start thinking about timber skyscrapers,” said Pei. “CLT and mass timber more generally are part of a massive trend in architecture and construction, but the seismic performance of tall buildings made from these kinds of wood is uncharted waters.”
While some tall wood buildings have been constructed in recent years, they have either been built in areas thought to be seismically inactive or they have been constructed with seismic safety systems made from non-wood-materials such as concrete and steel.
The tests are being conducted at NHERI@UCSD, the shake table experimental facility at UC San Diego funded by the National Science Foundation as part of its Natural Hazard Engineering Research Infrastructure (NHERI) program.