GridCombining old and new to create a novel power grid cybersecurity tool
An innovative R&D project that combines cybersecurity, machine learning algorithms and commercially available power system sensor technology to better protect the electric power grid has sparked interest from U.S. utilities, power companies and government officials. Creating innovative tools and technologies to reduce the risk that energy delivery might be disrupted by a cyber incident is vital to making the nation’s electric power grid resilient to cyber threats.
An innovative R&D project led by Berkeley Lab researchers that combines cybersecurity, machine learning algorithms and commercially available power system sensor technology to better protect the electric power grid has sparked interest from U.S. utilities, power companies and government officials.
Launched in 2015, the three-year project is now moving into the tech transfer stage, according to project lead Sean Peisert, a computer scientist in Berkeley Lab’s Computational Research Division and a cybersecurity expert. In addition to receiving funding support from the Department of Energy’s Cybersecurity for Energy Delivery Systems (CEDS) program in the Office of Electricity Delivery and Energy Reliability, the team has been working closely with key industry partners, including EnerNex, EPRI, Riverside Public Utilities and Southern Company.
“This project has, from the outset, been designed with technology transfer in mind,” said Peisert. who is also chief cybersecurity strategist for CENIC and associate adjunct professor of computer science at the University of California, Davis. “We have sought input from equipment vendors and power utilities to help ensure that the techniques developed are grounded in reality and are more likely to be implemented and used in practice.”
Enhancing grid resiliency
A more modernized electricity grid will result in better reliability and resilience and faster restoration of service when disruptions occur. Creating innovative tools and technologies to reduce the risk that energy delivery might be disrupted by a cyber incident is vital to making the nation’s electric power grid resilient to cyber threats.
LBL says that the power distribution grid was developed with careful consideration of ensuring safe and reliable operation; as the grid is modernized to further advance reliability, new features must be designed for cyber-resilience to prevent cyberattacks via IP networks. While IT security approaches developed for business systems to deal with malware and other cyberattacks include traditional intrusion detection systems, firewalls and encryption, these techniques may leave a gap in safety and protection when applied to cyber-physical devices because they do not consider physical information known about the device they are protecting.