AI Networks Are More Vulnerable to Malicious Attacks Than Previously Thought
“Basically, if you have a trained AI system, and you test it with clean data, the AI system will behave as predicted. QuadAttacK watches these operations and learns how the AI is making decisions related to the data. This allows QuadAttacK to determine how the data could be manipulated to fool the AI. QuadAttacK then begins sending manipulated data to the AI system to see how the AI responds. If QuadAttacK has identified a vulnerability it can quickly make the AI see whatever QuadAttacK wants it to see.”
In proof-of-concept testing, the researchers used QuadAttacK to test four deep neural networks: two convolutional neural networks (ResNet-50 and DenseNet-121) and two vision transformers (ViT-B and DEiT-S). These four networks were chosen because they are in widespread use in AI systems around the world.
“We were surprised to find that all four of these networks were very vulnerable to adversarial attacks,” Wu says. “We were particularly surprised at the extent to which we could fine-tune the attacks to make the networks see what we wanted them to see.”
The research team has made QuadAttacK publicly available, so that the research community can use it themselves to test neural networks for vulnerabilities. The program can be found here: https://thomaspaniagua.github.io/quadattack_web/.
“Now that we can better identify these vulnerabilities, the next step is to find ways to minimize those vulnerabilities,” Wu says. “We already have some potential solutions – but the results of that work are still forthcoming.”
The paper, “QuadAttacK: A Quadratic Programming Approach to Learning Ordered Top-K Adversarial Attacks,” by Thomas Paniagua, Ryan Grainger, and Tianfu Wu, will be presented: Dec. 16, at the thirty-seventh Conference on Neural Information Processing Systems (NeurIPS 2023), New Orleans, La.
The paper’s Abstract:
The adversarial vulnerability of Deep Neural Networks (DNNs) has been well-known and widely concerned, often under the context of learning top-1 attacks (e.g., fooling a DNN to classify a cat image as dog). This paper shows that the concern is much more serious by learning significantly more aggressive ordered top-K clearbox targeted attacks proposed in [Zhang and Wu, 2020]. We propose a novel and rigorous quadratic programming (QP) method of learning ordered top-K attacks with low computing cost, dubbed as QuadAttacK. Our QuadAttacK directly solves the QP to satisfy the attack constraint in the feature embedding space (i.e., the input space to the final linear classifier), which thus exploits the semantics of the feature embedding space (i.e., the principle of class coherence). With the optimized feature embedding vector perturbation, it then computes the adversarial perturbation in the data space via the vanilla one-step back-propagation. In experiments, the proposed QuadAttacK is tested in the ImageNet-1k classification using ResNet-50, DenseNet-121, and Vision Transformers (ViT-B and DEiT-S). It successfully pushes the boundary of successful ordered top-K attacks from K = 10 up to K = 20 at a cheap budget (1 × 60) and further improves attack success rates for K = 5 for all tested models, while retaining the performance for K = 1.
Matt Shipman is Assistant Director of Research Communications, University Communications at NC State University. The article was originally posted to the website of NC State.