“Virtual earthquakes” used to forecast Los Angeles quake risk
Employing data from the seismometers, the group then used mathematical techniques they developed to make the waves appear as if they originated deep within the Earth. This was done to correct for the fact that the seismometers Denolle installed were located at the Earth’s surface, whereas real earthquakes occur at depth.
In the study, the team used their virtual earthquake approach to confirm the accuracy of a prediction, made in 2006 by supercomputer simulations, that if the southern San Andreas Fault section of California were to rupture and spawn an earthquake, some of the seismic waves traveling northward would be funneled toward Los Angeles along a 60-mile-long (100-kilometer-long) natural conduit that connects the city with the San Bernardino Valley. This passageway is composed mostly of sediments, and acts to amplify and direct waves toward the Los Angeles region.
Until now, there was no way to test whether this funneling action, known as the waveguide-to-basin effect, actually takes place because a major quake has not occurred along that particular section of the San Andreas Fault in more than 150 years.
The release notes that the virtual earthquake approach also predicts that seismic waves will become further amplified when they reach Los Angeles because the city sits atop a large sedimentary basin. To understand why this occurs, study coauthor Eric Dunham, an assistant professor of geophysics at Stanford, said to imagine taking a block of plastic foam, cutting out a bowl-shaped hole in the middle, and filling the cavity with gelatin. In this analogy, the plastic foam is a stand-in for rocks, while the gelatin is like sediments, or dirt. “The gelatin is floppier and a lot more compliant. If you shake the whole thing, you’re going to get some motion in the Styrofoam, but most of what you’re going to see is the basin oscillating,” Dunham said.
As a result, the scientists say, Los Angeles could be at risk for stronger, and more variable, ground motion if a large earthquake — magnitude 7.0 or greater — were to occur along the southern San Andreas Fault, near the Salton Sea.
“The seismic waves are essentially guided into the sedimentary basin that underlies Los Angeles,” Beroza said. “Once there, the waves reverberate and are amplified, causing stronger shaking than would otherwise occur.”
Beroza’s group is planning to test the virtual earthquake approach in other cities around the world that are built atop sedimentary basins, such as Tokyo, Mexico City, Seattle, and parts of the San Francisco Bay area. “All of these cities are earthquake threatened, and all of them have an extra threat because of the basin amplification effect,” Beroza said.
Because the technique is relatively inexpensive, it could also be useful for forecasting ground motion in developing countries. “You don’t need large supercomputers to run the simulations,” Denolle said.
In addition to studying earthquakes that have yet to occur, the technique could also be used as a kind of “seismological time machine” to recreate the seismic signatures of temblors that shook the Earth long ago, according to Beroza.
“For an earthquake that occurred 200 years ago, if you know where the fault was, you could deploy instruments, go through this procedure, and generate seismograms for earthquakes that occurred before seismographs were invented,” he said.
German Prieto, an assistant professor of geophysics at the Massachusetts Institute of Technology and a Stanford alumnus, also contributed to the research.
— Read more in M. A. Denolle et al., “Strong Ground Motion Prediction Using Virtual Earthquakes” Science 343, no. 6169 (24 January 2014): 399-403 (DOI: 10.1126/science.1245678)